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Phase models with explicit time delays

Eugene M. Izhikevich*
Center for Systems Science & Engineering, Arizona State University, Tempe, Arizona 85287-7606†

~Received 26 February 1998!

Studying weakly connected oscillators leads to phase models. It has been proven recently that weakly
connected oscillators with delayed interactionsdo not lead to phase models with time delays even when the
delay is of the same order of magnitude as the period of oscillation. This has resulted in a fading interest in
such models. We prove here that if the interaction delay between weakly connected oscillators is much longer
than the period of oscillation, then the corresponding phase modeldoes havean explicit time delay.
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I. INTRODUCTION

Many phenomena in biology, chemistry, and engineer
can be described by a network of oscillators. The most sp
tacular example is a synchronous rhythmic flashing of fi
flies @1#. Among many other examples~see @2# and refer-
ences therein! we mention synchronization of pacemak
cells of the heart@3#, chemical waves@4#, and rhythmic ac-
tivity in the brain@5#. The latter has a prominent feature: th
interaction delay between the oscillators can be as larg
the oscillation period. Thus, the question is,can such a delay
endow the oscillatory network with new dynamical feature
In this paper we show that if the oscillators are weakly co
nected and the delay has the same magnitude as the peri
oscillation, then it does not play any role and can be
glected. In contrast, the delay starts to play a significant
when it is comparable with 1/« periods, where«!1 is the
strength of connections.

A. Phase models

There is an intimate relationship between weakly co
nected oscillators and phase models. Namely, for any we
connected network of oscillators of the form

dxi

dt
5 f i~xi !1«gi~x1 , . . . ,xn!, xiPRm, «!1, ~1!

there is a continuous noninvertible local mappingp:Rnm

3R→Tn, whereTn is then-torus, that projects solutions o
Eq. ~1! to those of the phase model of the form

du i

dt
5V i1«hi~u1 , . . . ,un ,«!,

whereV iPR is the frequency of thei th oscillator,u iPS1 is
its phase, andS1 is the unit circle@6#. Since many systems o
the form~1! can be transformed into the phase model ab
by a continuous change of variables, the phase model is
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ferred to as beingcanonical. Numerous other examples o
canonical models can be found in@6#.

When the oscillators have identical frequencies

V15•••5Vn5V,

then the projectionp could be chosen so that the pha
model has the form

du i

dt
5V1«hi~u2u i !1O~«2!,

where u5(u1 , . . . ,un)ÁPTn and u2u i5(u12u i , . . . ,un
2u i)

Á; see, e.g.,@6–8,4#.
To study dynamics of the phase model it is convenien

introduce the phase deviation variablesw iPS1, so that

u i~ t !5Vt1w i .

Then the phase model can be written in the form

dw i

dt
5«hi~w2w i !1O~«2!.

The key observation here is that the phase deviationsw i are
slow variables: We introduce the slow timet5«t and re-
write the system above in the form

dw i

dt
5hi~w2w i !1O~«!. ~2!

Much research keeps only an initial portion of the Four
series of the functionshi , which leads to the well-known
Kuramoto phase model,

dw i

dt
5v i1(

j 51

n

si j sin~w j1c i j 2w i !.

Here each parameter has a well-established meaning:v i is
the frequency deviation of thei th oscillator,si j encodes the
strength of connection from thej th to thei th oscillator, and
eachc i j PS1 is the natural phase difference@6#.
905 © 1998 The American Physical Society
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B. Phase models with delays

There are a number of papers@9–12# where Kuramoto’s
model is considered with an explicit time delay

dw i~t!

dt
5v i1(

j 51

n

si j sin@w j~t2h!1c i j 2w i~t!#,

which takes into account the finite speed of interactions
tween the oscillators. This is definitely the case in the n
roscience applications, since the transmission via nonmy
axons is very slow@13#, and the delay may be significant~in
comparison with the interspike period!.

It is reasonable to assume that phase models with de
are canonical for weakly connected oscillators with expl
transmission delays,

dxi

dt
5 f i„xi~ t !…1«gi„x1~ t2h!, . . . ,xn~ t2h!…. ~3!

The phase model for such a network was derived in@14,6#
~see also Corollary 2 below!, and it turned out to be withou
any explicit delay, but only with an additional natural pha
shift c; i.e.,

dw i

dt
5hi~w2c2w i !1O~«!,

wherec5hV mod 2p, and the functionshi are the same a
in Eq. ~2!.

Without elaborating how the phase shift appears, let
discuss how the explicit time delay disappears. For this,
tice that the phase deviation variablesw(t) depend on the
slow timet5«t. Therefore,

w„«~ t2h!…5w~t2«h!5w~t!1O~«h!,

and the explicit time delayh does disappear whenh
5const, but«!1; that is, when the transmission delay is
the same order of magnitude as the period of oscillation. T
is the case considered in@14,6#. Obviously, the fact that finite
transmission speed creates only a simple phase shift in
coupling functionshi could undermine the significance o
studying phase models with delays.

In this paper we prove that if the transmission delay
long enough, i.e., if it is comparable with 1/« cycles, then the
phase model does acquire an explicit time delay. This sho
revive the interest in such phase models.

II. MAIN RESULT

Consider a network of weakly connected oscillators of
form ~3! having nearly identical frequencies. Without loss
generality we may assume that the frequency is 1. The
lowing theorem is a generalization of the Malkin theorem
weakly connected oscillators; see@15–17# or the book by
Hoppensteadt and Izhikevich@6#, who proved the theorem
following @7,8#.

Theorem (phase model for weakly connected oscilla
with transmission delays).Consider a weakly connected sy
tem of the form~3!, and suppose that each equation in t
uncoupled system
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dxi

dt
5 f i~xi !, xiPRm, ~4!

has an exponentially orbitally stable 2p-periodic solution
g i,Rm. In this case the system~3! has a normally hyper-
bolic invariant manifoldM5g13•••3gn for «50. Sup-
pose that the manifold persists under the«-perturbations for
«.0.

Let t5«t be slow time and letw i(t)PS1 be the phase
deviation from the natural oscillationg i(t),t>0. Then, there
is an «0.0 such that for all 0,«<«0 the vector of phase
deviationsw5(w1 , . . . ,wn)ÁPTn is a solution to

dw i~t!

dt
5hi@w~t2z!2c2w i~t!#1O~«!, ~5!

where

z5«h and c5h mod 2p,

andhi are some 2p-periodic functions.
Proof. Hoppensteadt and Izhikevich~Lemma 4.5 in@6#!

proved that a direct product of exponentially asymptotica
stable limit cycle attractors,M5g13•••3gn , is a normally
hyperbolic compact invariant manifold for the uncoupl
system~4! ~this may not be true for direct products of oth
normally hyperbolic invariant manifolds!. Since that invari-
ant manifold persists for«.0, there is«0.0 such that for
all «<«0 system ~3! has a normally hyperbolic invarian
manifold in an«-neighborhood ofM . Let us denote

xi~ t !5g i@ t1f i~t!#1«Pi~ t,f,«!,

where smooth vector functions«Pi account for the
«-perturbation of the invariant manifoldM . Our goal below
is to find the equations forw i(t). For the sake of conve
nience we denotew i(t) simply by w i .

We differentiate the equation above with respect tot to
obtain

dxi

dt
5g i8~ t1w i !S 11«

dw i

dt D1«
]Pi~ t,w,«!

]t

5 f i@g i~ t1w i !#1«gi$g@ t2h1w~t2z!#%

1«D f i@g i~ t1w i !# Pi~ t,w,«!

plus terms of orderO(«2). Since

g i8~ t1w i !5 f i@g i~ t1w i !#,

we obtain

f i@g i~ t1w i !#
dw i

dt
1

]Pi~ t,w,0!

]t

5gi$g@ t2h1w~t2z!#%

1D f i@g i~ t1w i !# Pi~ t,w,0!.

It is convenient to rewrite the equation above in the form

dyi~ t,w!

dt
5Ai~ t,w i ! yi~ t,w!1bi~ t,w!, ~6!



.

a

d
s

-

th

sary

n

of

e

is

he

ated

c
,

ifi-

ed
sult
the
f a

m-
ars

elay
l
to

two

y is
rs.
ces

eu-
ion
the
100

PRE 58 907PHASE MODELS WITH EXPLICIT TIME DELAYS
where yi(t,w)5Pi(t,w,0) is an unknown vector variable
The matrix

Ai~ t,w i !5D f i@g i~ t1w i !#

and the vector

bi~ t,w!5gi$g@ t2h1w~t2z!#%2 f i@g i~ t1w i !#
dw i

dt

are 2p-periodic int. Both vectorsw andw(t2z) are treated
as parameters here.

To study existence and uniqueness of solutions to Eq.~6!
one must consider theadjoint linear homogeneous system

dqi~ t,w i !

dt
52Ai~ t,w i !

Á qi~ t,w i ! ~7!

with a normalization condition, which we take in the form

1

2pE0

2p

qi~ t,w i !
Á f i@g i~ t1w i !# dt51. ~8!

Each limit cycleg i is exponentially orbitally stable. Hence,
homogeneous (b[0) linear system of the form~6! and the
adjoint system~7! have 1 as a simple Floquet multiplier, an
the other multipliers are not on the unit circle. This implie
in particular, that the adjoint system~7! has a unique non
trivial periodic solution, sayqi(t,w i), which can easily be
found using standard numerical methods. Now we use
Fredholm alternative to conclude that the linear system~6!
has a unique periodic solutionyi(t,w) if and only if the
orthogonality condition

^q,b&5
1

2pE0

2p

qi~ t,w i !
Ábi~ t,w! dt50

holds. Due to the normalization condition~8! and expression
for bi , this is equivalent to

dw i

dt
5

1

2pE0

2p

qi~ t,w i !
Ági$g@ t2h1w~t2z!#% dt.

Due to the special form of the matrixAi(t,w i), it suffices to
find a solutionqi(t,w i) to the adjoint system~7! for w i50,
and any other solutionqi(t,w i) has the formqi(t,w i)5qi(t
1w i ,0), which we denote simply byqi(t1w i). Now we
rewrite the equation above in the form

dw i

dt
5

1

2pE0

2p

qi~ t1w i !
ÁGi$g@ t2h1w~t2z!#% dt

or in the form

dw i

dt
5

1

2pE0

2p

qi~s!ÁGi$g@s2h1w~t2z!2w i #% ds,

which implies Eq.~5!, where

hi~f!5
1

2pE0

2p

qi~s!ÁGi@g~s1f!# ds.
,

e

Remark.The assumption that the invariant manifoldM
persists under the time delayed perturbations is not neces
whenh50 ~Fenichel@18#! or even whenh5 const~Hirsch
et al. @19#!. Whether or not it is necessary whe
h5O(1/«) is still an open question.Indeed, differential de-
lay equations have very nice flows in the Banach manifold
maps of the compact interval@0,h# into then-torusM @Mor-
ris Hirsch~personal communication!#, but the interval@0,h#
becomes unbounded as«→0. So far we can neither prov
the persistence ofM nor present a counterexample.

The following corollary constitutes the major result of th
paper.

Corollary 1 (long transmission delay).If the transmission
delayh in the weakly connected system~3! is long enough,
that is, if it has order of magnitude of 1/« periods, then the
delay term in the phase equation~5! persists.

Proof. The proof follows from the fact thatz5«h5O(1)
in the phase model~5!.

The following corollary is due to@14,6#.
Corollary 2 (short transmission delay).If the transmission

delay in the weakly connected system~3! is comparable with
the period of an oscillation, that is, ifh5O(1), then the
phase equation~5! can be written in the form

dw i

dt
5hi~w2c2w i !1O~«!.

Proof. From z5«h5O(«), it follows that w(t2z)
5w(t)1O(«), and, hence, the delay term affects only t
small remainderO(«) in the phase model above.

One should be warned that the remainderO(«) in the
phase models could be discarded only when the trunc
system

dw i

dt
5hi~w2c2w i !

frequency-locks; that is, whenw(t) approaches a hyperboli
limit cycle attractor~for the definitions of frequency locking
phase locking, synchronization, etc., see Chap. 9 in@6#!. If it
does not, the remainder may affect the dynamics sign
cantly, and hence cannot be neglected.

III. DISCUSSION

In this paper we study how a finite transmission spe
affects weakly connected oscillators. We confirmed the re
@14# that this always induces a natural phase shift into
phase model provided that the delay is not a multiple o
period.

When the delay in the weakly connected system is co
parable with one or a few periods, no delayed term appe
in the phase model. In contrast, when the transmission d
is comparable with many (1/«) periods, the phase mode
does acquire an explicit time delay term. This may lead
rich and complicated dynamics even when there are only
weakly connected oscillators@9#.

It should be stressed that the absolute value of the dela
not important. Only its relative size to the period matte
Thus, the axon transmission delay of, say, 100 ms indu
only a natural phase shift between periodically spiking n
rons with the frequency 10 Hz, but the same transmiss
delay may be important and could not be removed from
phase equations if the neurons fire with the frequency
Hz, and the strength of connections is«'0.1.
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