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Phase models with explicit time delays

Eugene M. Izhikevich
Center for Systems Science & Engineering, Arizona State University, Tempe, Arizona 85287-7606
(Received 26 February 1998

Studying weakly connected oscillators leads to phase models. It has been proven recently that weakly
connected oscillators with delayed interactiatsnotlead to phase models with time delays even when the
delay is of the same order of magnitude as the period of oscillation. This has resulted in a fading interest in
such models. We prove here that if the interaction delay between weakly connected oscillators is much longer
than the period of oscillation, then the corresponding phase nttmded havean explicit time delay.
[S1063-651%98)10307-0

PACS numbes): 87.10+e, 05.45+b, 07.05.Mh, 42.79.Ta

I. INTRODUCTION ferred to as beinganonical Numerous other examples of
canonical models can be found[i].
Many phenomena in biology, chemistry, and engineering When the oscillators have identical frequencies
can be described by a network of oscillators. The most spec-
tacular example is a synchronous rhythmic flashing of fire- Q=---=0,=Q,
flies [1]. Among many other examplesee[2] and refer-
ences thereinwe mention synchronization of pacemakerthen the projectionp could be chosen so that the phase
cells of the hearf3], chemical wave$4], and rhythmic ac- model has the form
tivity in the brain[5]. The latter has a prominent feature: the
interaction delay between the oscillators can be as large as de,

the oscillation period. Thus, the questiondan such a delay ar -~ Qtehi(o—6)+ O(&?),
endow the oscillatory network with new dynamical features?
In this paper we show that if the oscillators are weakly CONy\here 0=(6,, 0,) T and 6— 6,=(6,— 6, 0,

nected and the delay has the same magnitude as the period 0
oscillation, then it does not play any role and can be ne-
glected. In contrast, the delay starts to play a significant rol?nt
when it is comparable with &/periods, wheree<1 is the
strength of connections.

0,)"; see, e.q.[6-8/4.
To study dynamics of the phase model it is convenient to
roduce the phase deviation variablgs= S*, so that

(1) =0t + g, .

A. Phase models Then the phase model can be written in the form

There is an intimate relationship between weakly con-
nected oscillators and phase models. Namely, for any weakly % —ch (¢— @)+ O(2)
connected network of oscillators of the form dt e '

dx The key observation here is that the phase deviatj

Nt x)F8G(Xe. ... X)), XeR™  e<l, (1 e key observation here is that the phase deviatigrere

dt () + 280 ) < € @) slow variables: We introduce the slow time=st and re-
write the system above in the form

there is a continuous noninvertible local mappipgR™™
XR—1T", whereT" is then-torus, that projects solutions of %_ h(o—)+0 2
Eq. (1) to those of the phase model of the form a7 Nile—e (e).

: Much research keeps only an initial portion of the Fourier
ar = Qitehi(6y, ... 08, series of the function®;, which leads to the well-known
Kuramoto phase model,

where(); e R is the frequency of théth oscillator, ¢, € St is q n
its phase, an@" is the unit circleg[6]. Since many systems of 2 ot > s sin(e+ i — @;).
the form (1) can be transformed into the phase model above dr = e '
by a continuous change of variables, the phase model is re-
Here each parameter has a well-established meanipis
the frequency deviation of thieh oscillator,s;; encodes the
*Electronic address: Eugene.lzhikevich@asu.edu strength of connection from thigh to theith oscillator, and
TURL: http://math.la.asu.edw/feugene eachy; e St is the natural phase differen¢é].
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B. Phase models with delays dx;
—_=T. . . 3 m
There are a number of papd®-12] where Kuramoto’s dt fi(xi), % e RY, )
model is considered with an explicit time delay

has an exponentially orbitally stablerZperiodic solution
doi(7) ) viCR™. In this case the systei8) has a normally hyper-
dr :wi+§1 Sij sinlej(7= )+ ¢ij— @i(7)], bolic invariant manifoldM =y, X - - - Xy, for e=0. Sup-
pose that the manifold persists under theerturbations for
which takes into account the finite speed of interactions be&>0. )
tween the oscillators. This is definitely the case in the neu- Let 7=t be slow time and let;(7) € S* be the phase
roscience applications, since the transmission via nonmyelif€viation from the natural oscillatiop(t),t=0. Then, there
axons is very slow13], and the delay may be significain is aney>0 such that for all &Ze<g( the vector of phase
comparison with the interspike peripd deviationse=(¢y, . .. ,¢n) ' €T" is a solution to
It is reasonable to assume that phase models with delays dei(7)
are car_10n_|cal for weakly connected oscillators with explicit D hile(r—)—d—@i(7)]+O(e), (5)
transmission delays, dr

n

X where

dx;
Tt (x . -, ... - ).
n iXi(t)+egiXy(t—=7m), ... X,(t—=7). (3 t=en and y=»n mod 2m,

The phase model for such a network was derivefll#,6]  andh; are some 2-periodic functions.

(see also Corollary 2 belgwand it turned out to be without Proof. Hoppensteadt and Izhikeviohhemma 4.5 in[6])
any explicit delay, but only with an additional natural phaseproved that a direct product of exponentially asymptotically
shift ¢; i.e., stable limit cycle attractorgyl =y, X - - - X y,,, is a normally
hyperbolic compact invariant manifold for the uncoupled
system(4) (this may not be true for direct products of other
normally hyperbolic invariant manifolglsSince that invari-
ant manifold persists fog >0, there iseg>0 such that for
wherey = £} mod 27, and the function$; are the same as all e<g, system(3) has a normally hyperbolic invariant

de;
E:hi((P_‘p_ ¢i)+0(e),

in Eq. (2). manifold in ane-neighborhood oM. Let us denote
Without elaborating how the phase shift appears, let us
discuss how the explicit time delay disappears. For this, no- Xi(t) = yi[t+ ¢i(7) ]+ ePi(t, p,e),

tice that the phase deviation variableér) depend on the

slow time 7= &t. Therefore where smooth vector functiongP; account for the

e-perturbation of the invariant manifolsl. Our goal below
is to find the equations fop;(7). For the sake of conve-
nience we denote;(7) simply by ¢; .
and the explicit time delayy does disappear whem We differentiate the equation above with respect to
=const, bute<1; that is, when the transmission delay is of obtain
the same order of magnitude as the period of oscillation. This
is the case considered|ih4,6]. Obviously, the fact that finite axi_ .
o . ey Y (t+ @)
transmission speed creates only a simple phase shift in the dt
coupling functionsh; could undermine the significance of _
studying phase models with delays. =filn(ttenl+egirt=nte(r=0l
In this paper we prove that if the transmission delay is +eDfi[yi(t+¢))] Pi(t,0,¢)
long enough, i.e., if it is comparable withel¢ycles, then the
phase model does acquire an explicit time delay. This shoulglus terms of orde©O(e?). Since
revive the interest in such phase models.
¥i (t+ o) =filvi(t+ )],

e(e(t—n)=e(t—en)=¢(7)+0(en),

14391, PPitee)
dr )" ° at

II. MAIN RESULT we obtain

Consider a network of weakly connected oscillators of the do

form (3) having nearly identical frequencies. Without loss of f.l yi(t+ o) ﬁJr
. . iLyi(t+ o ]d

generality we may assume that the frequency is 1. The fol- T
lowing theorem is a generalization of the Malkin theorem for — gy t— 7+ e(r— O
weakly connected oscillators; s¢&5—17 or the book by AT e
Hoppensteadt and Izhikevidi®], who proved the theorem +Df[ y(t+¢;)] Pi(t,,0).
following [7,8].

Theorem (phase model for weakly connected oscillatordt is convenient to rewrite the equation above in the form
with transmission delaysiConsider a weakly connected sys-

tem of the form(3), and suppose that each equation in the dyitte) o ‘
uncoupled system at Ai(t,e) Yi(t, @) +hi(t, ¢), (6)

JIPi(t,¢,0)
at
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where y;(t,¢) =P;(t,¢,0) is an unknown vector variable.

The matrix
Ai(t,0)=Dfi[ yi(t+¢)]

and the vector

de;
bi(t,e)=gi{Yt—n+e(r— )} —fil vi(t+ )] d_(i

are 2-periodic int. Both vectorsp and¢(7— ¢) are treated
as parameters here.

To study existence and unigueness of solutions to(&q.
one must consider thadjoint linear homogeneous system

dgi(t, i)

at =—A(t,e) " ai(t,e) (7)

with a normalization condition, which we take in the form

1 2m
Zfo ai(t, @) TFilyi(t+¢p)] dt=1. (8)

Each limit cycley, is exponentially orbitally stable. Hence, a

homogeneoush=0) linear system of the forni6) and the

adjoint systenm(7) have 1 as a simple Floquet multiplier, and
the other multipliers are not on the unit circle. This implies,

in particular, that the adjoint systefid) has a unique non-
trivial periodic solution, sayq;(t,¢;), which can easily be
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Remark.The assumption that the invariant manifdidi
persists under the time delayed perturbations is not necessary
when =0 (Fenichel[18]) or even wheny= const(Hirsch
etal. [19]). Whether or not it is necessary when
n=0(1/e) is still an open questiorindeed, differential de-
lay equations have very nice flows in the Banach manifold of
maps of the compact intervl, ] into then-torusM [Mor-
ris Hirsch(personal communicatioh but the interval 0,7]
becomes unbounded as—0. So far we can neither prove
the persistence d¥1 nor present a counterexample.

The following corollary constitutes the major result of this
paper.

Corollary 1 (long transmission delaylf. the transmission
delay # in the weakly connected systed) is long enough,
that is, if it has order of magnitude oflperiods, then the
delay term in the phase equati@) persists.

Proof. The proof follows from the fact thaf=e7=0(1)
in the phase moddb).

The following corollary is due t¢14,6].

Corollary 2 (short transmission delaylf.the transmission
delay in the weakly connected systé®) is comparable with
the period of an oscillation, that is, #f)=0(1), then the
phase equatiofb) can be written in the form

de
E:hi“ﬁ’_ =) +0(e).

Proof. From (=&e7n=0(¢), it follows that ¢(7—¢)
=¢(7)+0(e), and, hence, the delay term affects only the
small remainde©(¢) in the phase model above.

found using standard numerical methods. Now we use the One should be warned that the remain@e) in the

Fredholm alternative to conclude that the linear systémn
has a unique periodic solutiop(t,¢) if and only if the
orthogonality condition

1 (2=
(q,b)= Efo ai(t, i) "bi(t, @) dt=0
holds. Due to the normalization conditid®) and expression
for b;, this is equivalent to
do; 1 (27 - q
ar 27, qi(t,ei) g y[t— 7+ e(7— )]} dt.

Due to the special form of the matriki(t, ¢;), it suffices to
find a solutiong;(t,¢;) to the adjoint systen(7) for ¢;=0,
and any other solution;(t,¢;) has the formg;(t,¢;)=0q;(t
+¢;,0), which we denote simply by;(t+¢;). Now we
rewrite the equation above in the form

de; 2m T

or in the form

do; 1 (27 T
ar " 27)4 ai(s) G{ys—nt+e(1—{)—@il} ds,

which implies Eq.(5), where

1 (2=
() =521, qi(s) 'Gi[ y(s+ )] ds.

phase models could be discarded only when the truncated
system

de;
d_():_:hi(@_lﬂ—@i)

frequency-locks; that is, whep(7) approaches a hyperbolic
limit cycle attractor(for the definitions of frequency locking,
phase locking, synchronization, etc., see Chap.[®]n If it
does not, the remainder may affect the dynamics signifi-
cantly, and hence cannot be neglected.

Ill. DISCUSSION

In this paper we study how a finite transmission speed
affects weakly connected oscillators. We confirmed the result
[14] that this always induces a natural phase shift into the
phase model provided that the delay is not a multiple of a
period.

When the delay in the weakly connected system is com-
parable with one or a few periods, no delayed term appears
in the phase model. In contrast, when the transmission delay
is comparable with many (%) periods, the phase model
does acquire an explicit time delay term. This may lead to
rich and complicated dynamics even when there are only two
weakly connected oscillatof9].

It should be stressed that the absolute value of the delay is
not important. Only its relative size to the period matters.
Thus, the axon transmission delay of, say, 100 ms induces
only a natural phase shift between periodically spiking neu-
rons with the frequency 10 Hz, but the same transmission
delay may be important and could not be removed from the
phase equations if the neurons fire with the frequency 100
Hz, and the strength of connections ig~0.1.
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